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1. Introduction

Alzheimer's disease (AD) is characterized by progressive 
deterioration in intellect including memory and cognitive 
functions. It is the most common type of dementia among 
older people, accounting for 50-75% of all dementia 
cases (1). The number of AD patients was estimated at 36 
million in 2010 and will triple in the world by 2050 (2). In 
China, this figure is estimated at 9 million currently and the 
prevalence rate of AD in the population over the age of 60 
years is 2.43% (3,4). Proportionate increases over the next 
forty years in the number of people with AD will be much 
steeper in China since it is witnessing the aging of society in 
which the population over the age of 60 years will account 
for approximately 31% (about 400 million calculated on 
the current population base) of the whole population by the 
year of 2050 (5). These epidemiological data have painted 
a less than optimistic outlook in prevention and treatment 
of this disease in the world, especially in those countries 
with a rapidly aging society such as China.

 The currently approved drugs for treatment of 
AD, e.g.  donepezil, rivastigmine, galantamine, 
and memantine, aim to either inhibit acetylcholine 
esterase to increase the levels of the neurotransmitter 
acetylcholine, or antagonize N-methyl-D-aspartic acid 
(NMDA)-type glutamate receptors to prevent aberrant 
neuronal stimulation (6,7). These medicines, however, 
exhibit modest and transient effects in improving 
disease manifestation and could hardly prevent, halt, or 
reverse the disease (2). The typical course of AD lasts 
for a decade or so, from the mildest stage when the 
symptoms like memory problems appear to the most 
severe stage when the patients must depend on others 
for basic activities of daily living and finally die in a 
completely helpless state. The long duration of AD and 
shortage of effective or curative treatments bring an 
enormous emotional and financial burden on patients, 
their families and society.
 In the past several decades, much research has been 
done to evaluate the anti-AD effects of natural agents 
isolated from traditional Chinese medicines from 
perspectives such as scavenging free radicals, inhibiting 
lipid peroxidation, suppressing neuronal apoptosis, 
enhancing the function of cholinergic neurons, and 
improving behavioral abnormalities in experimental 
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animal models (8-10). Flavonoids are a series of 
compounds that are spread widely in higher plants 
and ferns and have attracted much attention due to 
their various biological actions (11). The characteristic 
chemical structures of these compounds is two benzene 
rings with hydroxyl groups linked by a three-carbon 
chain (11). The most commonly known biological 
action of flavonoids is their antioxidant activity, which 
could be understood from the reduction properties of 
phenol hydroxyls in the chemical structures. That said, 
compounds of this type exhibit various pharmacological 
effects and clinical efficacies that may not be solely 
related to their anti-oxidative activities, such as effects 
on the vascular system, inflammatory response, and 
estrogen-like effects (11). These actions of flavonoids 
constitute the underlying basis for their anti-AD effects. 
In this article, we review recent research progress on 
flavonoids isolated from traditional Chinese medicine 
against AD and their underlying mechanisms.

2. Pathological basis of AD

The presence of extracellular amyloid plaques, intra-
cellular neurofibrillary tangles (NFTs), and loss of 
neurons and synapses in the cerebral cortex and certain 
subcortical regions in the brain are the main features 
of AD (2). A great deal of evidence indicates that the 
onset of AD is probably the consequences of complex 
interactions among genetic, environmental, and lifestyle 
factors (12). The pathogenesis of AD has been revealed 
to correlate with the following aspects.

2.1. Genetic factors

AD has been demonstrated to be related to mutations or 
polymorphisms of at least four genes, including amyloid 
precursor protein (APP), presenilin (PS)-1, PS-2, and 
apolipoprotein E4 (APOE4) located at chromosomes 21, 
14, 1, and 19, respectively (13). Early-onset (< 60 years) 
familial AD, which probably accounts for less than 1% 
of AD cases, was found to be caused by mutations in 
APP, PS-1, and PS-2 genes (14,15). It was demonstrated 
that genetic abnormality occurred in at least one of these 
three genes in the early-onset familial AD. Late-onset (> 
60 years) familial and sporadic AD, which accounts for 
most AD cases, has been genetically linked to APOE4 
which has a gene-dosage effect on increasing the risk 
and lowering the age of onset of the disease (16,17). 
In addition, genetic defects of PS-1 and APOE4 were 
usually discovered in sporadic AD (12).

2.2. Aggregation and accumulation of amyloid-β (Aβ) 
in the brain

The amyloid plaques of AD brains largely consist 
of Aβ protein, which is a 39-42 amino acid protein 
derived from its parent protein, APP, by proteolytic 

cleavage at the β- and γ-secretase cleavage sites (12). 
The amyloid cascade hypothesis suggested Aβ is the 
pathogenic factor and drives the progression of this 
disease. The aggregation and accumulation of Aβ, 
which may result from increased production of Aβ, 
decreased degradation by Aβ-degrading enzymes, or 
reduced clearance across the blood-brain barrier, gave 
rise to plaques which induced neurodegeneration and 
finally led to the clinical dementia syndrome typical 
of AD (2). It was found that nonfibrillar assemblies of 
Aβ such as Aβ dimers, trimers, and larger oligomers 
are more pathogenic than insoluble Aβ fibrils found in 
amyloid plaques and monomeric Aβ (2). The neurotoxic 
activities of Aβ were expressed through a mechanism 
that induces intracellular generation of reactive oxygen 
species (ROS), lipid peroxidation, calcium overload, 
and eventually neuronal death (18-22).

2.3. Formation of NFT in neurons

Besides the abnormal accumulation of amyloid plaques, 
another pathologic feature of AD is intracellular 
formation of NFT which are primarily made up of 
aggregated tau protein bearing abnormal posttranslational 
modifications, including increased phosphorylation 
and acetylation (23-25). Tau protein is abundant in 
neurons with a function of stabilizing microtubules. The 
progressive accumulation of abnormal tau protein may 
lead to instability of the microtubular structure and the 
consequent loss of effective intracellular transport, and 
ultimately, neuronal death (26,27).

2.4. Disequilibrium of calcium homeostasis

Overload of intracellular Ca2+ concentration ([Ca2+]i) 
is one of the key factors that leads to neuron damage 
or death (28). Ca2+ is a major intracellular messenger 
that mediates many physiological responses of neurons 
to chemical and electrical stimulation. A regulated rise 
in [Ca2+]i could trigger many physiological events, 
while an unregulated elevation in [Ca2+]i can alter cell 
viability or induce cell apoptosis through activating 
proteases (i.e. calpains), reinforcing signals leading 
to caspase activation, or triggering other catabolic 
processes mediated by lipases and nucleases (29).

2.5. Free radical oxidative damage

Much evidence supported that free radical induced 
oxidative damage may play a role in the pathogenesis of 
AD (30,31). Features of brain, including a high content 
of readily oxidized fatty acids, high use of oxygen, 
and low levels of antioxidants, make it especially 
sensitive to oxidative damage. Both postmortem and 
living patients with AD demonstrated evidence of 
oxidative damage in brain tissue. Free radicals may 
attack and damage lipids, proteins, and DNA, lead to 
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3.1. Ginkgo flavonoids

Ginkgo flavonoids are the main constituents in the extract 
of Ginkgo biloba (EGB). Ginkgo flavonoids consist 
mainly of flavonols such as quercetin, kaempferol, and 
isorhamnetin and biflavonoids like ginkgetin, isoginkgetin, 
and amentoflavone (36,37). These ginkgo flavonoids have 
free radical scavenging effects and could inhibit lipid 
peroxidation. Studies demonstrated that mitochondrial 
DNA from brain of old rats exhibited oxidative damage 
that is significantly higher than that from young rats (38). 
In addition, mitochondrial glutathione was more oxidized 
and peroxide formation in mitochondria was higher in 
old than in young rats (38). Treatment with EGB could 
partially prevent the indices of oxidative damage in brain 
from old animals (38). Other studies demonstrated that 
ginkgo flavonoids exhibited neuroprotective effects via 
antioxidant activity in brain damaged mice caused by 
ischemia-reperfusion (39). One randomized, double-
blind, placebo-controlled, and multicenter clinical trial 
indicated that EGB was safe and capable of stabilizing 
and improving the cognitive performance and the social 
functioning of AD patients for 6 months to 1 year (40). 
Currently, EGB is used in clinics as a medical drug for 
treatment of AD in China, France, and Germany.

change in structure and function of these molecules, 
and consequently result in cellular damage, dysfunction 
and cell death (32). Besides, oxidative stress could also 
enhance Aβ production, which further induces nerve 
tissue damage (33).

2.6. Mitochondrial impairments

Mitochondrial dysfunction has a certain impact on 
the pathogenesis of AD as indicated by impaired 
mitochondrial respiration observed in brain, platelets, 
and fibroblasts of AD patients (34). Energy failure, 
increased oxidative stress, and accumulation of Aβ 
could be caused by dysfunction of mitochondria, which 
would damage neurons and could explain many of 
the biochemical, genetic, and pathological features of 
sporadic AD (35).

3. Flavonoids as anti-AD agents

Thus far, flavonoids including ginkgo flavonoids, 
soy isoflavones, puerarin, total flavonoids of Baical 
Skullcap stem and leaf, liquiritin, apigenin, rhodosin, 
and hyperoside were reported to have potent effects 
against AD (Table 1).

Table 1. Flavonoids isolated from traditional Chinese medicine in treatment of AD

Agents

Gingko flavonoids

Soy isoflavones

Total flavonoids of 
Baical Skullcap stem 
and leaf

Puerarin

Liquiritin

Apigenin

Hyperin

Rhodosin

Typical origin

Ginkgo biloba L. leaves

Glycine max

Radix puerariae roots

Scutellaria baicalensis Georgi 
stems and leaves

Glycyrrhiza uralensis Fisch. roots

Apium graveolens

Hypericum perforatum L.

Rhodiola rosea

Structures or contents

Mixture:  mainly including quercetin,  kaempferol , 
isorhamnetin, and biflavonoids like ginkgetin, isoginkgetin, 
and amentoflavone
Mixture: mainly including daidzin, daidzein, genistin, 
genistein, and glycitin, glycitein

Mixture: mainly including scutellarin, baicalin, and chrysin

Reference

36,37

41,42
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3.2. Soy isoflavones

Soy isoflavones attracted much interests in recent years 
due to its estrogen-like effects and role in influencing 
sex hormone metabolism. The main constituents of 
isoflavones are demonstrated to be daidzin, daidzein, 
genistin, genistein, glycitin, and glycitein (41,42). It is 
thought that soy isoflavones intake is a "natural" way to 
replenish the aging body's declining estrogen levels and 
thus relieve menopausal symptoms. A previous study 
demonstrated that postmenopausal women who undertook 
estrogen-replacement therapy had a significantly lower 
risk for the onset of AD than women who did not (43). 
These facts suggested the possible benefits of soy 
isoflavones in AD prevention and treatment.
 Mechanisms of anti-AD effects of estrogen lie in 
the following aspects (44,45). i) Estrogen reduces the 
production of Aβ (46). Estrogen is capable of regulating 
the metabolism of APP to enhance the production of 
soluble APP and decrease the accumulation of Aβ, 
thus exerting neuroproductive effects. ii) Estrogen 
antagonizes the toxicity of Aβ (47). Aβ is capable 
of promoting lipid peroxidation at the membrane of 
neuronal cells, leading to production of ROS which 
further impairs the membrane proteins and breaks the 
homeostasis of ion balance. The membrane depolarizes 
and thereby Ca2+ influx occurs via NMDA receptor 
channels, which enhances the damage of DNA and 
lipids and finally leads to neuronal death. Studies 
indicated that estradiol is a natural anti-oxidant for 
membrane lipid peroxidation, thereby alleviating the 
toxicity of Aβ to neurons (48). iii) Estrogen promotes 
Ca2+ outflow (49). Estrogen is capable of releasing 
intracellular Ca2+ via non-genomic mechanisms, which 
is not affected by the concentration of extracellular 
Ca2+. It was found that estrogen could inhibit the 
elevation of intracellular Ca2+ concentration induced 
by glutamic acid and antagonize the disequilibrium 
of calcium homeostasis caused by Aβ. iv) Estrogen 
inhibits inflammation mediated by the transcription 
factor nuclear factor κB (NF-κB) which is involved 
in the pathological process of AD (50). v) Estrogen 
promotes synaptic growth and expressions of nerve 
growth factor (NGF) and its receptor (51). NGF was 
demonstrated to be a cytokine that could increase the 
mRNA levels of choline acetyltransferase, enhance the 
activities of choline acetyltransferase, and promote the 
release of acetylcholine. Thus, estrogen is capable of 
enhancing the effects of NGF. vi) Estrogen prevents 
excessive phosphorylation of tau protein (52). Although 
estrogen exhibits the various above potential actions, 
its application in clinics for treatment of AD is dismal 
since it also causes side effects to non-neuronal 
cells, such as increasing the incidence of breast and 
endometrial cancer (53-55).
 Previous studies found that phytoestrogens such as 
genistein, one of the main ingredients of soy isoflavones, 

exerted pharmacological effects in a tissue specific 
manner (56). They selectively act on non-reproductive 
tissues to a certain degree and thus reduce the risk of side 
effects. Animal studies indicated that soy isoflavones 
were capable of improving learning and memory abilities 
through influencing the brain cholinergic system and 
reducing age-related neuron loss especially in female rats 
(57-59). The underlying mechanisms of favorable effects 
of soy isoflavones on cognitive function were thought to 
relate to their potential to mimic the actions and functions 
of estrogens in the brain (60), and promote the synthesis 
of acetylcholine and neurotrophic factors such as brain-
derived neurotrophic factor (BDNF) and NGF in the 
hippocampus and frontal cortex (61,62). A randomized, 
double-blind, cross-over, and placebo-controlled trial 
revealed that soy isoflavones were safe and had positive 
effects on cognitive function, especially verbal memory, 
in postmenopausal women (63). These studies provided 
evidence of the potential usefulness of soy isoflavones in 
treatment of AD patients.

3.3. Puerarin

Puerarin is an isoflavanone glycoside extracted from 
species in the family Leguminosae such as Radix 
puerariae and is currently used to treat ischemic 
cerebrovascular disease and other vascular dysfunctions in 
China (64). Studies found that puerarin had potent effects 
in improving learning and memory disorders induced by 
scopolamine or D-galactose in a mouse model (65). Yan 
et al. reported that puerarin protected neurons against 
apoptosis in the cortex and hippocampus of AD rats 
caused by Aβ25-35 through downregulating Aβ1-40 and Bax 
expression in brain tissues, therefore alleviating the spatial 
learning and memory impairment of diseased animals (66). 
The anti-AD effects of puerarin were also suggested to be 
related to its abilities in decreasing the lipid peroxidase 
levels and increasing superoxide dismutase levels in brain 
tissues, enhancing cerebral blood flow, and improving 
brain microcirculation (67,68).

3.4. Total flavonoids of Baical Skullcap stem and leaf

Baical Skullcap is a frequently used traditional Chinese 
medicine in China. Studies on its active ingredients 
revealed that the total flavonoids extracted from the 
stem and leaf, mainly including scutellarin, baicalin, and 
chrysin, exhibited a series of pharmacological effects such 
as anti-inflammation, prevention from myocardial damage 
induced by ischemia-reperfusion, and improved cerebral 
ischemia (69,70). Regarding its effects against AD, 
Zuo et al. found that total flavonoids of Baical Skullcap 
stem and leaf were capable of protecting hippocampal 
neurons against damage induced by injection of Aβ25-35 
in hippocampus in rat (71). The underlying mechanisms 
were related to its actions of decreasing the accumulation 
of lipid peroxide and proliferation of glial cells induced 
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by Aβ25-35 (71). Another study conducted by Ye et al. 
demonstrated that the total flavonoids alleviated memory 
and learning injury and protected morphological change 
of hippocampal neurons in AD rats induced by Aβ25-35 
injection (72). These studies suggested the potential 
efficacies of total flavonoids of Baical Skullcap stem and 
leaf against AD.

3.5. Liquiritin

Liquiritin is an extract from the root of Glycyrrhiza 
uralensis Fisch. (73). Yang et al. investigated the 
protective effects of liquiritin on primary cultured 
rat hippocampal neurons (74). They found that pre-
treatment with liquirtin for 6 h decreased the elevated 
levels of intracellular Ca2+ concentration and neuron 
apoptosis caused by Aβ25-35. On the other hand, liquirtin 
is capable of enhancing the effects of nerve growth 
factor in extending neuraxons (74). It is worth noting 
that liquirtin could also specifically inhibit the activity of 
acetylcholinesterase and promote the differentiation of 
neuronal stem cells into cholinergic neurons (74,75). The 
neuroprotective and neurotrophic effects make liquirtin a 
promising agent against AD.

3.6. Apigenin

Apigenin is a flavone usually obtained from Apium 
graveolens (76). It is a potent chelating agent that could 
decrease the metal ions participating in radical reactions 
and therefore reduce the creation of free radicals (77). 
In addition, apigenin could serve as an anti-oxidant 
to scavenge free radicals such as oxygen, nitric oxide 
(NO), and superoxide anion. On the other hand, apigenin 
possesses estrogen-like effects which are similar to the 
actions of estradiol (78). Due to these biological actions, 
apigenin was reported to protect human neuroblastoma 
cells SH-SY5Y against apoptosis induced by oxidative 
stress in vitro (79). In vivo, apigenin was found to 
improve the memory and learning disorders of aging 
mice induced by D-galactose (80).

3.7. Other flavonoids

Hyperoside is a flavonol isolated from species of 
Hypericum (81). In the mouse ischemia-reperfusion 
injury model, hyperoside was capable of inhibiting 
lactate dehydrogenase activity decline in brain tissues 
and obviously improve memory and learning disorders 
of model mice (82). Rhodosin is also a flavonol obtained 
from the root of Rhodiola rosea (83). Rhodosin functions 
as an anti-oxidant which scavenges free radicals, reduces 
the content of lipid peroxide, and inhibits degeneration 
of mitochondria in cerebrum cells and hippocampal 
pyramidal cells (68). Administration of rhodosin was 
reported to be capable of improving the memory and 
learning abilities of aging or AD mice (84).

4. Conclusion and prospects

AD is a chronic neurodegenerative disease in the 
central nervous system characterized by progressive 
memory loss and damage of cognition function. The 
pathogenesis underlying AD is complicated and not 
yet well clarified. The currently used medications for 
treatment of AD are mainly symptom-management 
drugs. Although they do improve symptoms such as 
memory disorders and play a key role in treatment of 
AD at present, these drugs are not capable of reversing 
the progress of AD. Disease-modifying drugs that aim 
at root causes of AD are the current research focus and 
represent the future direction of new drugdevelopment.
 In light of the pathogenic complexities of AD, it is 
probably unlikely that single-target drugs will achieve 
satisfactory curative effects. The main reasons include 
the following points. i) The onset of this disease 
involves abnormalities of multiple genes such as APP, 
PS-1, PS-2, and/or APOE4. ii) The current targets are 
multifunctional and strong inhibition or activation 
of one target may lead to undesired side effects. For 
example, acetylcholinesterase inhibitors may cause 
accumulation of peripheral acetylcholine, resulting 
in peripheral acetylcholine responses such as nausea 
and vomiting. iii) The single-target theory overlooks 
possible molecular interactions which may constitute 
cross-talk. Intervention in one of them may not finally 
affect cell functions or status due to compensatory 
mechanisms. Given these considerations, development 
of multiple-target drugs that have both neuroprotective 
and neurotrophic efficacies are rational strategies in 
treatment of AD.
 Flavonoids reviewed in this article exhibit a series 
of biological actions against AD including increasing 
the functions of cholinergic neurons, suppressing 
typical pathology changes such as neuronal apoptosis, 
and/or regulating neurotrophy and regeneration relevant 
mechanisms. These pharmacological effects suggest 
that more flavonoids may be translated into a new type 
of anti-AD drugs in the future. 
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