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Extrachromosomal DNA (ecDNA) refers to a class of circular, non-chromosomal DNA that has 
recently gained widespread attention due to its potential role in aging and neurodegenerative 
diseases. The generation of ecDNA is closely associated with processes such as double-strand breaks, 
micronuclei formation, and the breakage-fusion-bridge (BFB) cycle, all of which are integral to 
regulation of gene expression, genetic stability, and clonal evolution. In neurodegenerative diseases 
such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, the aberrant formation 
of ecDNA is closely linked to defects in DNA repair, alterations in synaptic plasticity, and neuronal 
dysfunction. The distinct distribution and functional roles of ecDNA in these conditions make it 
a potential diagnostic biomarker and therapeutic target. This review provides an overview of the 
mechanisms underlying ecDNA formation and its functions in the nervous system. Additionally, 
it explores the clinical potential of ecDNA in disease diagnosis, targeted therapy, and personalized 
medicine, offering new insights for future research and treatment strategies.

1. Introduction

With the advancement of life sciences research, 
extrachromosomal DNA (ecDNA) has emerged as an 
important biological phenomenon that is attracting 
increasing attention. From normal physiological activities 
to pathological conditions, ecDNA plays a critical role 
in regulating gene expression, maintaining cellular 
genetic stability, and influencing disease progression. 
Recent studies on the role of ecDNA in aging and 
neurodegenerative diseases have provided new insights 
into the understanding of these complex diseases.

2. Biological characteristics and mechanisms of 
ecDNA formation

ecDNA refers to circular DNA molecules that originate 
from chromosomes and lack centromeres and telomeres. 
These DNA fragments are generated through various 
mechanisms, including double-strand DNA breaks, 
asymmetric chromosome segregation, micronuclei 
formation, and the breakage-fusion-bridge (BFB) cycle 
(1-3). Studies have shown that ecDNA generation 
significantly increases under stress or during repair of 

DNA damage (4). For example, drug-induced stress, such 
as methotrexate treatment, can trigger the amplification 
of the DHFR gene in the form of ecDNA, thereby 
enhancing cellular resistance to the drug (5).
 ecDNA is typically distributed unevenly within 
subcellular compartments, a feature that exacerbates 
genetic diversity between cell clones and provides a 
selective advantage for cellular evolution (6). In tumors, 
ecDNA containing oncogenes such as MYC, EGFR, 
and HER2 has been closely linked to tumor progression 
(7,8). However, ecDNA is not limited to cancer cells. 
Small polydispersed circular DNAs (spcDNA) have also 
been found in normal tissues, such as muscle and blood, 
although their functions remain largely unexplored (9,10).
 The formation of ecDNA within cells is closely 
associated with DNA repair mechanisms. Studies have 
shown that double-strand breaks (DSBs) are one of 
the primary triggers for ecDNA formation (11). Under 
stresses such as chemotherapy or radiation exposure, 
non-homologous end joining and microhomology-
mediated end joining (MMEJ) DNA repair mechanisms 
may incorrectly stitch together DNA fragments, resulting 
in circular structures (12-14). Additionally, micronuclei 
formation and the BFB cycle are also key mechanisms in 
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ecDNA generation. In micronuclei, residual chromosome 
fragments may transform into ecDNA due to replication 
delays or chromatin breaks.
 In normal cells, ecDNA, such as spcDNA and 
t-circles, primarily originates from repetitive sequences 
and may play a role in regulating genomic stability 
and maintaining telomere integrity (9,15). In cancer 
cells, however, ecDNA is typically larger and contains 
oncogenes or enhancer elements. Studies have shown 
that the amplification of genes such as MYC and HER2 is 
closely associated with the malignancy of tumors (16,17). 
Due to their circular structure, ecDNAs exhibit higher 
gene expression activity and genetic instability, which 
provide cells with an adaptive advantage in response to 
the microenvironment (18).

3. EcDNA and genetic stability in aging

Aging is a biological process closely associated with 
the accumulation of DNA damage (19). Studies have 
shown that, as individuals age, the capacity for DNA 
repair gradually declines, while DNA damage, and DSBs 
in particular, increases significantly (20). This damage 
may lead to the formation of ecDNA through inaccurate 
repair pathways and can also impact chromosomal 
stability. Extrachromosomal ribosomal DNA circles 
(ERCs), which were first discovered in model organisms 
like yeast, have been directly linked to the aging process 
(21,22). In aging yeast cells, ERCs accumulate in large 
quantities and accelerate the aging process by disrupting 
cellular metabolism and gene expression (23).
 In human neurons, the generation of DSBs is 
considered a normal physiological process that is 
involved in the expression of early response genes 
(ERGs) (24). With advancing age, however, the 
DNA repair capacity of neurons declines, and the 
generation of ecDNA may have profound effects on 
neuronal function. Research has shown that small 
ecDNAs containing regulatory gene fragments play 
a role in modulating gene expression and epigenetic 
modifications. This may help explain the significance of 
ecDNA in neural plasticity.

4. Role of ecDNA in neurodegenerative diseases

In neurodegenerative diseases, the accumulation of 
DNA damage and the impairment of DNA repair are 
considered to be key factors in disease pathogenesis. 
Aberrant generation of ecDNA has been linked to the 
onset and progression of diseases such as Alzheimer's 
disease (AD), Parkinson's disease (PD), and Huntington's 
disease (HD).

4.1. AD

In patients with AD, elevated levels of markers of DNA 
damage such as γH2AX have been observed in neurons 

and glial cells, suggesting that dysfunctional DNA 
repair plays a critical role in disease progression (25). 
Studies have shown that β-amyloid can inhibit DNA-
PK-dependent non-homologous end joining (NHEJ) 
repair, leading to the accumulation of DNA damage 
(26). The generation of ecDNA in this context may 
exacerbate neuronal dysfunction by affecting gene 
expression or epigenetic modifications. Additionally, 
AD mouse models have revealed increased ecDNA 
formation after exposure to a new environment, but 
these DNA fragments are poorly repaired, suggesting 
that ecDNA could serve as a novel marker of defects in 
DNA repair (27).

4.2. PD 

In PD, key proteins, including α-synuclein, are closely 
linked to DNA damage and ecDNA formation (28). 
Overexpression of α-synuclein has been found to induce 
both single-strand and double-strand DNA breaks 
and to interfere with the repair of DSBs (29). EcDNA 
detected in patients with PD may contain gene sequences 
that regulate synaptic plasticity, thereby impacting the 
functional stability of dopaminergic neurons.

4.3. HD

In HD, the mutant huntingtin protein (mHTT) impairs 
NHEJ repair, resulting in the accumulation of DSBs in 
primary neurons and increased formation of ecDNA 
(30-32). Studies have shown that mHTT interacts 
with the Ku70 protein, hindering the repair of DSBs 
and subsequently increasing the amount of ecDNA 
(32). These ecDNA fragments may further disrupt 
gene expression networks, contributing to neuronal 
degeneration.

5. Clinical and research implications

The role of ecDNA in aging and neurodegenerative 
diseases opens new avenues for disease diagnosis and 
treatment. First, the specific sequences and structures 
of ecDNA can serve as molecular biomarkers for early 
disease diagnosis (33,34). Monitoring the abnormal 
presence of ecDNA in the brain tissue of patients with 
AD may provide insights into disease progression, 
helping to inform personalized treatment strategies. 
Moreover, interventions aimed at modulating ecDNA 
formation or clearance or influencing the regulation 
of gene expression associated with ecDNA, could 
represent novel therapeutic approaches. Studies have 
shown that targeted deletion of ecDNA carrying 
oncogenes can reduce cancer invasiveness, and 
this strategy may potentially be adopted to regulate 
abnormal gene expression in neurodegenerative 
diseases.
 Furthermore, drugs that enhance DNA repair capacity 
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